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A short and stereoselective synthesis of manzacidins A and C, and their enantiomers was achieved via
stereoselective hydrogenation reactions of dehydroamino acid esters 5-8 using a chiral Rh catalyst.

© 2008 Elsevier Ltd. All rights reserved.

Manzacidin A (1) and manzacidin C (2), a novel class of 1,3-
dehydropyrimidine alkaloids possessing a bromopyrrole ester unit,
were isolated from the Okinawan sponge Hymeniacidon sp. by
Kobayashi et al. in 1991 (Scheme 1).! Bromopyrrole alkaloids exhi-
bit a diverse array of pharmacological activities represented by o-
adrenoceptor blockers, antagonists of serotonergic receptors, or
actomyosin ATPase activators.? In spite of their intriguing biologi-
cal activities, the pharmacological evaluation of manzacidins A and
C has not yet been undertaken due to the limited availability of
these natural products. These facts together with the unique struc-
tural features of the manzacidins have attracted much attention as
a synthetic target from the synthetic community. Many synthetic
efforts focusing on the stereoselective construction of the 1,3-dia-
mino stereogenic centers attached to the C4 methine and C6 qua-
ternary carbon centers have been made since our first total
synthesis in 2000.3-> We now report the short and stereoselective
synthesis of manzacidins A (1) and C (2), and their enantiomers 3
and 4 via the diastereoselective hydrogenation reaction of optically
active o,p-unsaturated esters 5-8 using a chiral [Rh(I)(COD)-Et-
DuPHOS]"OTf" catalyst (Scheme 1).

The N-Boc dehydroamino acid esters 5-8, and N-Cbz esters 15
and 16 were used in this study. These olefins were prepared from
the chiral o-methylserine esters 9 and 10, which were readily pre-
pared on a multi-gram scale by the stereoselective Strecker synthe-
sis of an acetol ester (Scheme 2).°*%6 The dehydroamino acid esters
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Scheme 1.

5, 6, 15, and 16 were synthesized by olefination reactions of the o~
methyl Garner’s aldehydes 11 and 1272 with the phosphonates 13
and 14.° The TBS-protected derivatives 7 and 8 were prepared from
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Scheme 2. Reagents and conditions: (a) 13 (3.0 equiv), DBU (3.0 equiv), CH,Cl,, 0 °C
to rt, 22 h; (b) 14 (3.0 equiv), DBU (3.0 equiv), CH,Cl,, 0 °C to rt, 22 h; (c) TBSCI
(2.0 equiv), imidazole (2.0 equiv), DMF, 0 °C to rt, 17 h; (d) LiBH,4 (4.0 equiv), MeOH
(4.2 equiv), Et;0, 0 °C, 1 h; (e) TEMPO (0.1 equiv), PhI(OAc); (1.2 equiv), CH,Cl,, 0 °C
to rt, 18 h; (f) 13 (3.0 equiv), DBU (3.0 equiv), CH,Cl,, 0 °C to rt, 22 h.

9 and 10 by a conventional silylation, reduction, oxidation, and
olefination with 13 and 14, respectively. These olefination reac-
tions allowed the stereoselective formations of Z-isomers (>20:1).
The conversion efficiency was satisfactory in terms of the yields
based on the recovery of the starting materials (>80%).'°

We were initially interested in the substrate-controlled hydro-
genation reaction of 6 or 15. Avenoza et al. reported the hydroge-
nation reaction of Z-17 to give 18 in a stereoselective manner
(18:19=94:6 (Eq. 1))."" The inverse diastereoselectivity occurred
when E-17 was employed (18:19 = 5:95). In view of the structural
analogy of 17 with the o-methyl analogs 5 and 6, we attempted the
hydrogenation reactions of 6 prior to examining the chiral Rh
catalyst-controlled hydrogenation reaction.

0" "NHBoc pz'fc Q" "NHBoc 0O~ "NHBoc
NHBz — = NHBz + NHBz
H \— 2-PrOH H H (1)
COoMe 18 H COsxMe 19 H COzMe
Z-isomer 17 18:19 = 94:6

18:19 = 5:95 from E-isomer

The Z-olefin 6 underwent a smooth hydrogenation reaction (Pd/
C, H,). However, the diastereoselectivity was found to be moderate
(ca 3:2, (Eq. 2)). Although other hydrogenation reaction conditions
[Hy, catalysts: Pd/Al;03, Rh/Al;03, PtO,, [Ir(COD)(CysP)(Py)]PFs,
solvents: MeOH, 2-PrOH, AcOEt] and the 1,4-reduction condition
using Mg/MeOH were examined, the diastereoselectivities were
not improved to a satisfactory level. The use of the N-Cbz-15, the
E-isomers of 6, and an acyclic dehydroamino acid 7 were not effec-
tive at all to give the corresponding reduced products in moderate
selectivities. The more sterically congested nature of the quarter-
nary amino carbon center of 6 would hamper the diastereoselec-
tive hydrogenation pathway.

H

2
Q  NHBoc Pd/C Q" "NHBoc
5 NHBoc — > - NHBoc (2)
S\= 2-PrOH $
6 CO,Me product_ratio H COMe
ca 3:2

Based on the above results, we turned our attention to the chiral
Rh catalyst-controlled hydrogenation reaction. Recently, Sasaki et
al. reported the stereoselective reduction of a highly functionalized
olefin with a chiral [Rh(I)(COD)-Et-DuPHOS]|*OTf~ catalyst'? during
the synthesis of neodysiherbaine (Eq 3).!*> The N-Cbz derivative 20
was a superior substrate when compared to the N-Boc derivative
21. In terms of the double asymmetric induction,'* the combina-
tion of 20 and the (S,5)-[Rh(I)(COD)-Et-DuPHOS|*OTf catalyst
was apparently the matched case to obtain the desired reduction
product.

jﬁ H, (0.8 MPa)
O Rh(1)(COD)-
Meozow (S, 5)-Et-DUPHOS]*OTH- Meoch¥<
(5 mol%)
MeO,C no THF, rt, 96 h MeO,C

22 R=Cbz (85%, >20:1)
23 R=Boc (90%, 6:1)

20 R = Cbz
21 R=Boc

(&)

The N-Cbz-olefin 15 was used for the chiral [Rh(I)(COD)-Et-Du-
PHOS]"OTf-catalyzed hydrogenation reaction (Scheme 3). The use
of the (S,5)-Et-DuPHOS Rh catalyst resulted in the recovery of the
starting olefin (entry 1). Switching the chiral catalyst to the (R,R)-
Et-DuPHOS Rh catalyst allowed the hydrogenation reaction to give
a 1:5 mixture of 24 and 25 (48 h, entry 2), in which the major (4R)-
isomer 25 possessed the requisite (4R,6S)-stereochemistry of ent-
manzacidin A. To improve the diastereoselectivity, the N-Boc olefin
6 was subjected to the same reduction conditions. The reduction
with the (R,R)-Et-DuPHOS Rh catalyst proceeded in a highly stere-
oselective manner to give (4R,65)-27 (26:27 = 1:13, entry 4). In
contrast, the (S,S)-Et-DuPHOS Rh catalyst gave a 1:1 mixture of
26 and 27 (168 h, entry 3). These results indicated that the reaction
of (S)-N-Boc 6 with the (R,R)-catalyst in the matched case of these
hydrogenation reactions and the hydrogenation of (R)-5 with the
(5,5)-catalyst would afford (4S,6R)-29 corresponding to manzacidin
A(1).

The treatment of (R)-5 with the chiral (§,S)-Et-DuPHOS Rh cat-
alyst gave 29 in a stereoselective manner (dr=13:1, Scheme 4).
(4S,6R)-29 was converted to 1 by the following sequence of trans-
formations:>'* (i) hydrolysis of the methyl ester, (ii) removal of the
Boc groups, (iii) tetrahydropyrimidine ring formation, and (iv)
esterification with 28. Similarly, (4R,6S)-27 derived from (S)-6
was converted to ent-manzacidin A (3). The spectral data of the
synthetic 1 were identical to those of the authentic data, confirm-
ing the stereochemical outcome of the chiral catalyst-controlled
hydrogenation reactions of (R)-5. The spectral data of ent-manzac-
idin A (3) were identical to that of 1 except for the sign of the opti-
cal rotation. Thus, manzacidin A and its enantiomer were
synthesized in 6 steps from the (S)-aldehyde 11 and (R)-aldehyde
12, respectively.

QO  'NBoc Hy (0.8 MPa) NBoc NBoc
s NHP  cat?(5 mol%) \—@NHP \—«S—<NHP
S\= THF, rt
CoMe H CO,Me CO,Me
15P =Cbz 24 P =Cbz 25P = CbZ
6 P = Boc 26 P =Boc 27 P = Boc

Entry Olefin Catalyst Time(h) Yield Product ratio

1 15 (88) 72 ob

2 15 (RR) 48 96  24:25=1:5°7
3 6 (8,5) 168 76  26:27 = 1:1
4 6 (RR) 48 98  26:227=1:13

4cat. [Rh(l)(COD)-Et-DUuPHOS]*OTf" 2 Recovery of 15.
¢Numbering system accords with those of the manzacidins.
9 Product ratio was determined by the conversion to manzacidins.

Scheme 3.
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Scheme 4. Reagents and conditions: (a) 1 N NaOH, THF, 1 h; (b) TFA, CH,Cl,, 0 °C to
rt, 30 min; (c) TFA, CH(OMe)s, 1t, 17 h; (d) 28, (2.0 equiv), NaH (2.0 equiv), DMF, 0 °C
tort, 2 h.

Although the use of the cyclic unsaturated esters 5 and 6 was
found to be the appropriate substrates to access manzacidin A
(1) and its enantiomer 3, these reductions forced limitations on
the stereoselective synthesis of manzacidin C (2) and its enantio-
mer 4. We assumed that the release of the ring strain to reduce
the steric hindrance of the cyclic oxazolidine 5 could facilitate
the reagent-controlled hydrogenation reaction. As expected, the
reduction of the acyclic olefin 7 with the (S,5)-Rh catalyst smoothly
proceeded to give (4S,6S)-31 as the major product (30:31=1:8).
The diastereoselectivity was inverted to give (45,65)-30 as the ma-
jor product (30:31 = 6:1) when the (R,R)-catalyst was employed. As
a result, the use of the acyclic dehydroamino acid esters, attributed
to the stereoselective formation of (4S,6S)-31 was involved in the
synthesis of manzacidin C (2). The (4R,6R)-32 was prepared using
the (R,R)-catalyst. The resulting (4S,65)-31 and its enantiomer
(4R,6R)-32 derived from 8 were converted into manzacidin C (2)
and its enantiomer 4, respectively, in a manner similar to the syn-
thesis of manzacidin A (1) (Scheme 5).

Purification of the major stereoisomer of the manzacidins by
recrystallization was initially not successful. Therefore, we exam-
ined the HPLC separation conditions and found that heptafluorobu-
tyric acid (the lower chart) was the superior additive to
trifluoroacetic acid (the upper chart) for the distinct separation of
a mixture of the manzacidins (Fig. 1).

In summary, we have established a short and efficient synthetic
route to access manzacidin A (1), manzacidin C (2), and their enan-
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6S TBSO 16S 148
TBSO\)\/:COQMe =1 co,me
30 adyl . 46%
(5,5)-cat. 83% (30:31 = 1:8) V' (4 steps)
(RR)-cat. 96% (30:31 = 6:1) Manzacidin C (2)
ent-Manzacidin C (4)
48%
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BocHN  NHBoc ((5 mglﬁz; BocHN  NHBoc
TBSO\/iQ/k ————> TBSO._-{88 4~
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Scheme 5. Reagents and conditions: (a) 1N NaOH, THF, 0°C, 1 h; (b) 6 N HC], rt,
18 h; (c) TFA, CH(OMe)s, rt, 17 h; (d) 28 (2.0 equiv), NaH (2.0 equiv), DMF, 0 °C to rt,
2h.
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Figure 1. HPLC profiles of manzacidins.

tiomers 3 and 4 by the chiral catalyst-controlled hydrogenation
reactions of the dehydroamino acid esters 5-8. The improved HPLC
purification protocol allows for ample of the enantiomerically pure
manzacidins and their enantiomers for further evaluation of their
biological activities.
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